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Boolean Secret Sharing

Let X be a variable and M a random value uniformly
chosen among the possible values of X .

Then X can be shared with the vector (X ⊕M ,M).

M is random ⇒ no information on X is available from the
observation of M .

X ⊕M one-time-pad of X ⇒ no information on X is
available from the observation of X ⊕M .
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Masking ' Computing on Shared Values

Traces contain information plus some noise.
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Masking ' Computing on Shared Values

Unprotected device: unidimensional leakage is sufficient to
mount an attack.
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Masking ' Computing on Shared Values

Protected software device with 2 shares: ideally bi-
dimensional leakages are sufficient to mount an attack.
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Masking ' Computing on Shared Values

Protected software device with 3 shares: ideally tri-
dimensional leakages are sufficient to mount an attack.
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Masking ' Computing on Shared Values

Dimension of an attack : number of leakage points used.
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Order (statistical)

Let Xi be r random variables, then the central mixed
moment of orders d1, . . . , dr is defined by:

E((X1 − E(X1))d1 × · · · × (Xr − E(Xr ))dr ).

The order of an attack is the smallest statical moment
order (d =

∑
i di) used in the attack.

If we have noisy random variables, the moment becomes
harder to estimate as the order increases.
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Application to attack

B Order ↔̃ data complexity.

B Dimension ↔̃ computational complexity.

The data complexity of a successful attack increases
exponentially with the order of the attack (with noise as a
basis).
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Outline

1. Leakage squeezing

2. Assumption fulfilled

3. On the adversary condition

4. On the physical condition
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Motivation

B Masking security holds if all masks are uniformly
distributed ⇒ strong randomness requirements in
masked implementation. Leakage squeezing proposes
to reduce the amount of entropy (i.e. the number of
masks).

B Less masks can lead to more efficient implementation

B Preserved security order under two conditions:
◦ Unidimensional leakage.
◦ Linear leakage.
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On the security conditions
B Unidimensional leakage only 1 share, adversarial

condition:
◦ points of interest are difficult to find
◦ implementation always leak on all shares

What happen if adversary obtain leakage on both
shares?

Similar security as uniform masking :)

B Linear leakage, physical condition:
◦ classical hypothesis (Hamming weight leakage) for

adversary but not for evaluation
◦ cryptographic designers can hardly control the

leakage function

What happen if the leakage function is not linear?

The security order decrease, depending on the degree
of the leakage function :(
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Target

C12 = {0x03, 0x18, 0x3f, 0x55, 0x60, 0x6e, 0x8c, 0xa5,
0xb2, 0xcb, 0xd6, 0xf9} [NGD11]. Univariate security of
order 2, if linear leakage.

C16 = {0x10, 0x1f, 0x26, 0x29, 0x43, 0x4c, 0x75, 0x7a, 0x85,
0x8a, 0xb3, 0xbc, 0xd6, 0xd9, 0xe0, 0xef} [BCG13].
Univariate security of order 3, if linear leakage.
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Modification of hypothesis

B Multivariate (higher dimension) attacks. ⇒
Adversarial condition.
l1 = l(X ⊕m) + N1,

l2 = l(m) + N2

B Polynomial leakage. ⇒ Physical condition.
Let X be an internal value, Xi denotes the value of the
i th bit of X .

l(X ) =
∑

i aiXi

+
∑

i

∑
j bi ,jXi × Xj +

∑
i

∑
j

∑
k ci ,j ,kXi × Xj × Xk

For uniform masking, polynomial leakage does not mix
different shares. It has thus no incidence on security
order.
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Framework

B Mutual information.

The maximum information available.

B Security analysis.

Resistance against nowadays adversary.
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Framework

B Perceived information.

LK

The maximum information available.

B Security analysis.
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Intuition on information analysis
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Information analysis can help to find the order of the small-
est informative moment.

E((X + σ2)d)
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For unprotected device mean are different.
For protected device mean are equals but covariance are
different.
Having the full distribution can help to discriminate keys
⇒ information in higher order.
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For unprotected device difference is still in the mean.
For protected full distribution and Gaussian template model
are close ⇒ few information in higher order.
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Outline

1. Leakage squeezing

2. Assumption fulfilled

3. On the adversary condition

4. On the physical condition
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Hypothesis

B univariate leakage on 1 share :

l1 = l(X ⊕m) + N

B leakage function is linear (Hamming weight)
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Univariate case
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If random subset is used, then information about the key
is available in the mean.
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If carefully chosen subset is used, then information about
the key is available in higher moment.
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Such an attack is impossible for masking with 256 masks.
Since only 1 share is observed.
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Conclusion classical Hypothesis

B C12: information in 3rd moment

B C16: information in 4th moment

As expected from previous works on leakage squeezing
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Outline

1. Leakage squeezing

2. Assumption fulfilled

3. On the adversary condition

4. On the physical condition
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Hypothesis

B bivariate leakage on both shares :

l1 = l(X ⊕m) + N1, l2 = l(m) + N2

B leakage function is linear (Hamming weight)
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Bivariate case
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l1 = Hw (X ⊕m) + N1, l2 = Hw (m) + N2
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Using Gaussian mixture allows us to obtain more informa-
tion for low noise. ∃ useful information in higher moments
that gradually vanishes as noise increasing.
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If carefully chosen subset is used, then information about
the key is available in the covariance matrix.
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If carefully chosen subset is used, then information about
the key is available in the covariance matrix.
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Conclusion adversarial condition

B C12: information in 2nd moment

B C16: information in 2nd moment

B uniform masking: information in 2nd moment

The results are similar as for uniform masking :)
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Outline

1. Leakage squeezing

2. Assumption fulfilled
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Hypothesis

B univariate leakage on 1 share :

l1 = l(X ⊕m) + N

B leakage function is polynomial

l(X ) =
∑
i

aXi +
∑
i

∑
j

bXi × Xj +
∑
i

∑
j

∑
k

cXi × Xj × Xk
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Polynomial leakage case
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Polynomial leakage case
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C16 Hamming weight

If a = 1, b = 0 and c = 0 we have Hamming weight model.
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Polynomial leakage case
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If a = 0, b = 1 and c = 0 the degree of the leakage function is
2, hence the slope of the IT curve is 4

2
.
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Polynomial leakage case
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If a = 0, b = 0 and c = 1 the degree of the leakage function is
3, hence the slope of the IT curve is 4

3
.
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Conclusion physical condition

B Security order decreases with the degree of the
polynomial degp.

B If the security for linear leakage function is of order d
then the security order becomes d ′ = d/degp

E((X )d) = E((X degp)d
′
)

B No impact for uniform masking.

The security order is decreasing depending on the degree of
the leakage function :(
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Conclusion
B Assumption fulfilled:

◦ uniform masking ⇒ no attack
◦ leakage squeezing ⇒ attack of large order

As excepted from previous works on leakage squeezing.

B On the adversary condition :
◦ uniform masking ⇒ attack of second order
◦ leakage squeezing ⇒ attack of second order with

small degradation for low noise

Similar security :)

B On the physical condition :
◦ uniform masking ⇒ no attack
◦ leakage squeezing ⇒ smaller slope of the curve

Reduction of the slope depending on the degree of the
leakage function:(
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